Monday, September 30, 2013

Low Voltage Remote Mains Switch

This circuit allows a 240V mains appliance to be controlled remotely via low-voltage cabling and a pushbutton switch. The mains appliance (in this case, a light bulb) is switched with a suitably-rated relay. All of the electronics is housed in an ABS box located in proximity to the appliance. The pushbutton switch and plugpack are located remotely and can be wired up with 3-core alarm cable or similar. Cable lengths of 20m or more are feasible with this arrangement. When the switch (S1) is pressed, the input (pin 8) of IC1c is briefly pulled low via the 10mF capacitor, which is initially discharged.

Low-voltage remote mains switch circuit schematic

The output (pin 10) immediately goes high and this is inverted and fed back to the second input (pin 9) via another gate in the quad NAND package (IC1d). In conjunction with the 1MW resistor and 470nF capacitor, IC1d eliminates the effects of contact "bounce" by ensuring that IC1c’s output remains high for a predetermined period. The output from IC1c drives the clock input of a 4013 D-type flip-flop (IC2). The flipflop is wired for a "toggle" function by virtue of the Q-bar connection back to the D input. A 2.2MW resistor and 100nF capacitor improve circuit noise immunity. Each time the switch is pressed, the flipflop output (pin 13) toggles, switching the transistor (Q1) and relay on or off. Note that all mains wiring must be properly installed and completely insulated so that there is no possibility of it contacting the low-voltage side of the circuit.
[Continue reading...]

Saturday, September 28, 2013

Alarm Clock With Day Selector

This circuit disables an alarm clock on Saturdays and Sundays when people like to sleep in but enables normal operation on Mondays to Fridays so that people rise in time for work or school. The core of the circuit is a 4017 decade counter which acts as the day counter and it is used in conjunction with a desk clock which acts the alarm and a watch module with alarm function which provides one clock pulse very day to the 4017. In operation, the watch module feeds a day pulse via transistor Q3 to the clock input of IC1. This has seven outputs connected via day switches (S1-S7) and diodes D3-D9 to Q1 which disables the alarm signal to the speaker via transistor Q2. LEDs1-7 indicate the actual day (if you forget!).

To set the system, set the desk clock for the correct time and for the desired alarm time (eg, 6’o’clock). The watch module is set to the correct time and its alarm set to midnight. The day counter, IC1, is set to the correct day, as indicated by the LEDs, by pushing switch S12 and closing switch S8 or S9. S8 is normally left open to conserve the battery by leaving the LEDs off. As shown on the circuit, switches S1-S7 are set to sound the alarm on Mondays to Fridays and disable it on Saturday and Sunday. However, you can change the days to suit your work habits.
[Continue reading...]

Thursday, September 26, 2013

Simple Game Circuit


This is a very simple game circuit. You can play this with your friends. To win this game one has to scores hundred points in very short time. Incase if you want to restart the game you need to press S1 button switch.

When supplies the output voltage make sure you do not use over 5 Volts as it can damage the components. We recommend you to use copper PCB board to build this circuit. Also we do not recommend any of our circuits for kids who do not familiar with electronics and live current.

As you can see in the circuit diagram the it operates by three ICs. Try to use good quality  switches for long durability.



[Continue reading...]

Tuesday, September 24, 2013

Simple NiCd Battery Charger

A simple NiCd charger can be built using ‘junk box’ components and an inexpensive LM317 or 78xx voltage regulator. Using a current limiter composed of R3 and a transistor, it can charge as many cells as desired until a ‘fully charged’ voltage determined by the voltage regulator is reached, and it indicates whether it is charging or has reached the fully charged state. If the storage capacitor (C1) is omitted, pulsed charging takes place. In this mode, a higher charging current can be used, with all of the control characteristics remaining the same. The operation of the circuit is quite simple. If the cells are not fully charged, a charging current flows freely from the voltage regulator, although it is limited by resistor R3 and transistor T1.

The limit is set by the formula Imax ≈ (0.6 V) ÷ R3 For Imax = 200 mA, this yields R3 = 3 Ω. The LED is on if current limiting is active, which also means that the cells are not yet fully charged. The potential on the reference lead of the voltage regulator is raised by approximately 2.9 V due to the voltage across the LED. This leads to a requirement for a certain minimum number of cells. For an LM317, the voltage between the reference lead and the output is 1.25 V, which means at least three cells must be charged (3 × 1.45 V > 2.9 V + 1.25 V). For a 78xx with a voltage drop of around 3 V (plus 2.9 V), the minimum number is four cells.

Simple NiCd Charger circuit schematic

When the cells are almost fully charged, the current gradually drops, so the current limiter becomes inactive and the LED goes out. In this state, the voltage on the reference lead of the regulator depends only on voltage divider R1/R2. For a 7805 regulator, the value of R2 is selected such that the current through it is 6 mA. Together with the current through the regulator (around 4 mA), this yields a current of around 10 mA through R1. If the voltage across R1 is 4 V (9 V – 5 V), this yields a value of 390 Ω. The end-of-charge voltage can thus be set to approximately 8.9 V. As the current through the regulator depends on the device manufacturer and the load, the value of R1 must be adjusted as necessary. The value of the storage capacitor must be matched to the selected charging current. As already mentioned, it can also be omitted for pulse charging.
[Continue reading...]

Sunday, September 22, 2013

Body Charge Detector

It is well known that through such simple everyday activities as walking on a carpet or moving in a chair, the body accumulates a static charge - sometimes many thousands of volts. Due to its extreme sensitivity, this circuit will detect not only such charges but also EMF-induced voltages in the body, which are generally far smaller. This means that, whether you happen to be "charged up" on any particular day or not, your body will almost certainly trigger this circuit.

An interesting twist is that the sensor does not need to be made of metal. Provided it is isolated from ground, the sensor can be any conductor, including a plant in a pot. The circuit is a comparator based on an LF351 FET-input op amp (IC1). The has the benefit of a high impedance input which is crucial for detecting a static charge. The other aspect which is crucial is that the 0V side of the circuit must be connected to earth (eg, a metal stake driven into the ground). Without the grounded connection, the circuit will yield poor results.

Body charge detector circuit schematic

Notice that the sensor connections are taken through diodes D1 and D2. This means that both negative and positive charges will cause the voltage at IC1s inverting input to exceed that of the non-inverting input (the voltage at the inverting input rises or that at the non-inverting input falls). Trimpot VR1 and the two 470kO resistors across the supply are used to set the inverting and non-inverting inputs (pins 2 and 3) at around half-supply (ie, +2.5V), while the two 470kO input resistors protect IC1 against damage from static.

The sensitivity of the circuit is adjusted by VR1. While higher static charges will brightly flash the red LED, small and very rapid discharges through the sensor may barely illuminate it. The way around this is to feed the output at pin 6 directly to the trigger input (pin 2) of a standard 555 monostable timer IC. This would then offer a clearer indication of triggering. This circuit could prove particularly useful as an indicator of static charge before handling sensitive components.
[Continue reading...]

Friday, September 20, 2013

2002 Chevrolet Chevy s10 4 Wiring Diagram

2002 Chevrolet Chevy s10 4 Wiring Diagra
The Part of 2002 Chevrolet Chevy s10 4 Wiring Diagram: power distribution schematics, fuse block,
battery, generator, ignition switch, crank fuse, neutral position, starter relay, solenoid, fuse holder, red wire, black wire, green wire, start pole
[Continue reading...]

Thursday, September 12, 2013

Amazing Artificial LED Candle

The Akafugu LED Candle is an artificial candle that imitates the flickering of a real candle. Use it in place of a real tea candle: It will fit inside a tea candle casing or any holder made for tea candles.


Features:

  • Randomly flickering LED: Imitates a candle
  • Fits inside a tea candle casing
  • Open Source Firmware (available at GitHub)
  • Open Source Hardware: Eagle PCB design files available at GitHub
  • On-board ISP header for upgrading firmware
[Continue reading...]

Tuesday, September 10, 2013

Sectional View Centaur Two Shaft Gas Turbine Engine

Sectional View Centaur Two Shaft Gas Turbine Engine

[Continue reading...]

Wednesday, September 4, 2013

Signal Tracer and Injector

A simple test circuit to fault find audio and radio equipment. Can be used to inject a square wave signal, rich in harmonics, or used with headphones as an audio tracer.

Signal Tracer and Injector Schematic


Notes:
A single pole double throw sitch is used to switch between inject and trace modes. The diagram is drawn in trace mode, the earpiece being connected to the collector of the last transistor. Both transistors are wired as emitter followers, providing high gain. DC blocking is provided by the 1n capacitor at the probe end, and the two stages are capacitively coupled.

when the switch is thrown the opposite way (to the blue dot) both transistors are wired as an astable square wave generator. This provides enough harmonics from audio up to several hundred kilohertz and is useful for testing AM radio Receivers.
[Continue reading...]

Monday, September 2, 2013

300 3400 Hz Second Order Speech Filter

Using two op amps, this filter is designed for second-order response. It has a bandpass of 300 to 3400 Hz, for applications in speech or telephone work.

300-3400 Hz Second Order Speech Filter Schematic 


[Continue reading...]
 
Copyright © 2012. Raul's Diagrams Collection - Posts · Comments
Powered by Blogger